
Monitoring Production Line Performance to Reduce
Manufacturing Failures

Desh Raj, Abhilasha Sancheti, Mrinal Tak, and Kunal Jain
Department of Computer Science and Engineering

Indian Institute of Technology Guwahati
Guwahati, India - 781039

Abstract—Predicting failures in manufacturing processes is
important for improving cost and time efficiency in any industry.
Modern engineering relies upon fine-grained data captured at
every step along manufacturing lines for fault analysis. However,
such an analysis poses two challenges: (1) faults occur extremely
rarely, which makes it difficult for a machine learning system
to model the characteristics of a faulty sample, and (2) since
measurements are obtained at each station, the data is very high-
dimensional. In this work, we pose the task of fault analysis as
a binary classification problem, and explore a combination of
various techniques to solve this problem for a high-dimensional
skewed distribution containing numerical, categorical, and times-
tamp features. These include various sampling methods, feature
selection, sparse matrix approaches, and a meta-optimization on
the evaluation metric. We analyse these on the Bosch Production
Line Performance data set, and evaluate each technique incre-
mentally to demonstrate how pre-processing, classifier selection,
and post-processing may improve classification performance.

I. INTRODUCTION

With an increasing emphasis to reduce production failures in
manufacturing processes, data science methods are being pro-
posed as the next big revolution. Especially with the ushering
of an Internet of Things (IoT) era, industries are producing
large sets of high-dimensional data every day to analyze
and detect failure patterns. This focus towards collection,
aggregation, organization, and analysis of data is driven by
factors such as reduced price of sensors, rapid decline in the
cost of data storage and computation, and increasing accuracy
of machine learning methods in modeling diverse processes.

However, this abundance in data generation also leads to a
few challenges. First, due to the presence of multiple sensors
at each station along the production line, a large number of
features are generated for every sample, and most of these
features may be heavily correlated or entirely unimportant.
Further, if the training set is small in size, any learning
algorithm may grossly overfit on this high-dimensional data,
such that the model performs poorly in practice.

Second, in addition to a high dimensionality, modern man-
ufacturing processes are highly efficient such that failures
are few and far between. For this reason, any distribution of
data obtained from industry is highly skewed towards positive
samples (success) which makes it difficult for machine learn-
ing systems to learn the characteristics of negative samples
(failures). The skewed class distribution problem is common
in many settings, and various sampling techniques have been
devised to tackle these [1], [2], [3].

Fault analysis is often tackled using either of two ap-
proaches:

1) Anomaly detection: In data mining, anomaly detection is
the identification of items, events, or observations which
do not conform to an expected pattern or other items in
a dataset. Unsupervised anomaly detection techniques
detect anomalies in an unlabeled test data set under the
assumption that the majority of the instances in the data
set are normal by looking for instances that seem to fit
least to the remainder of the data set.

2) Binary classification: It is a supervised learning task in
which we pose the task of predicting internal manu-
facturing failures as that of classifying datapoints into
two classes, namely success or failure. Given examples
of datapoints each marked with one of the classes, a
classifier can learn to predict the correct class for a
datapoint. Classifiers typically assume that the number
of datapoints in the two classes as balanced. This as-
sumption is violated when detecting internal manufac-
turing failures, since these occur very rarely in typical
production workflows.

In this work, we pose the problem of fault detection
as a binary classification task. We propose and evaluate a
combination of various techniques to simultaneously tackle the
problems of high-dimensionality and skewed class distribution.
We begin by sampling the dataset to obtain a smaller represen-
tative distribution. The numerical, categorical, and timestamp
features are then independently reduced using several methods
to obtain a smaller dimensionality.

This sampled data set is then evaluated using weighted and
non-weighted classifiers to determine the best base classi-
fier. In a final post-classification step, the minority class is
oversampled and a Bayesian approach is used to optimize
the evaluation metric by varying the weight of each class as
parameter in the weighted classification.

II. DATASET DESCRIPTION

We use the Bosch Production Line Performance data set
released by Bosch as part of a Kaggle machine learning
contest 1.

Bosch has supplied a huge dataset (14.3 Gb) containing
three types of feature data: numerical, categorical, date stamps

1https://www.kaggle.com/c/bosch-production-line-performance

Fig. 1: Architecture of the proposed method.

and the labels indicating the sample as good or bad. There are
968 numerical features, 2140 categorical features and 1156
date features.

The training data has 1184687 samples and the learned
model was used to predict on a test dataset containing 1183748
samples. However, since the labels of the test dataset were not
provided, we discarded the test set and used only the training
samples for our evaluation.

III. PROPOSED METHOD

An overview of the proposed method is represented through
the flow diagram shown in Fig 1. As shown in the figure,
the proposed method comprises 4 major stages, i.e., (i) initial
sampling, (ii) feature selection, (iii) choice of base classifier,
and (iv) Bayesian optimization of evaluation metric. In this
section, we discuss each of these stages in some detail.

A. Initial sampling

Due to a large sample size, it becomes difficult (or even
impossible) to train a classifier on the entire dataset. Further,
it may be redundant to perform such a training since the
characteristics of each class may be well represented by
a smaller sample size. For these reasons, our first step is
undersampling the entire dataset, using an unbiased and a
biased approach as explained below.

1) Unbiased: In this approach, we select a subset of the
original samples without taking into account the corresponding
labels.

2) Biased: In a biased sampling technique [3], all the
positive instances are retained while performing sampling. The
rationale behind this approach is that if the number of positive
samples are low in the original dataset, further subsampling
may lead to information loss.

In practice, we found that a 0.001 fraction of the training
set was sufficiently able to represent the characteristics of all
the samples. Once samples are obtained, we split them in
an 80:20 ratio for training and testing, respectively. It is to
be noted that a stratified sampling technique was used for

Statistic Biased Unbiased
Total samples 73693 59188

Train size 58954 47350
Test size 14739 11838

Positive instances (train) 5456 278
Positive instances (test) 1423

TABLE I: Dataset Summary Statistics.

performing this split. The statistics of the biased and unbiased
samples thus obtained are shown in Table III. During further
experimentation, it was found that the biased sample naturally
performs better than the unbiased sample, and hence we take
this sample under consideration.

B. Feature selection

After undersampling records, we perform feature selection
using several methods to select the most important features
among numeric, categorical, and timestamp features.

1) Numerical features: There have been numerous inves-
tigations for determining efficient methods of dimensionality
reduction for numerical features. While traditional approaches
such as principal component analysis (PCA), factor analy-
sis, and classical scaling employed linear methods, various
nonlinear approaches, such as kernel PCA, Isomaps, maxi-
mum variance unfolding, etc., have recently been proposed
for the same purpose. Despite the large variability in these
approaches, they usually fail to outperform traditional linear
techniques [4] due to several reasons such as (a) presence
of trivial optimal solutions, (b) reliance on convex objective
functions, and (c) dependence on neighbourhood graphs to
model the local structure of the data.

We use a Gradient Boosting Machine [5], [6] technique
(GBFS) for numerical feature selection in our architecture.
This choice of algorithm is due to the following properties of
GBFS:

1) As it learns an ensemble of regression trees, it can nat-
urally discover nonlinear interactions between features.

2) In contrast to, e.g., random forests, it unifies feature
selection and classification into a single optimization.

3) In contrast to existing nonlinear algorithms, its time and
memory complexity scales as O(dn), where d denotes
the number of features and n the number of data points,
and is very fast in practice.

4) GBFS can naturally incorporate pre-specified feature
cost structures or side-information, e.g., select bags
of features or focus on regions of interest, similar to
generalized lasso in linear feature selection.

We do not describe the details of the algorithm here for sake
of brevity. We select 500 features from the 968 given features
and use this in further experimentation. During validation, it
was found that selecting fewer features resulted in performance
decrease, whereas more features did not necessarily improve
the classifier performance.

2) Categorical features: Traditionally, categorical features
are represented in one-hot notation and concatenated with
numerical features. However, due to the presence of 2140
categorical features in our given dataset, conventional feature
selection algorithms fail miserably in selecting important cat-
egorical features.

Instead, we employ three popular sparse online classification
techniques to learn the one-hot encoded categorical features.
These are described below in some detail

1) Stochastic Truncated Gradient (STG) [7]: Consider a
loss function L(w, zi) which is convex in w, where wi =
(xi, yi) is an input-output pair. The soft-regularization
formulation of L1-regularization can be defined as

ŵ = arg min
w

N∑
i=1

L(w, zi) + g||w||1 (1)

This can be understood as an online version of an
efficient L1 loss optimization approach. At a high level,
it works with the soft-regularization formulation 1 and
decays the weight to a default value after every online
stochastic gradient step. This simple approach enjoys
minimal time complexity (which is linear in k and inde-
pendent of d) as well as strong performance guarantee.
For mathematical details, the reader is advised to refer
the paper by Langford et al. [7].

2) Forward-Backward Splitting (FOBOS): [8] In an online
approach, every iteration of the FOBOS algorithm con-
sists of two steps:

wt+ 1
2

= wt − αtgt (2)

wt+1 = arg min
w
{1

2
||w − wt+ 1

2
||+ λ||w||1} (3)

This algorithm removes the problems of non-
differentiability in cases such as l1-regularization
by taking minimization steps mixed with sub-gradient
steps. For mathematical details, the reader is advised to
refer the paper by Duchi et al. [8].

3) Enhanced Regularized Dual Averaging (ERDA): [9]:
At each iteration of the ERDA algorithm, the sum of

three terms is minimized, the dual average- a linear
function which is obtained by averaging all previous
sub-gradients g′t = t−1

t g
′
t−1 + 1

t gt, the regularization
function Ψ(w) = λ||w||1, and an additional strongly
convex regularization term γ√

t
(1
2 ||w||

2
2 + p||w||1). The

weights are updated as

wt+1 = arg min
w
{< g′t, w > +λRDAt ||w||1 +

γ

2
√
t
||w||22}

(4)
For mathematical details, the reader is advised to refer
the paper by Xiao et al. [9].

Each of these sparse online learning algorithms are trained
on 50% of the training set and then used to predict scores for
the training and test sets. These scores may then be considered
as representative of all the categorical features. In essence, we
thus obtain 3 numerical features which can effectively replace
the 2140 categorical features (at the cost of some acceptable
loss of information).

3) Timestamp features: We extracted several manually en-
gineered features from the date and time features, such as
time interval between stations, maximum/minimum/average
time, time of day at particular stations, etc. However, such
a feature engineering was found to fail in improving classifier
performance. For this reason, we ignore these features and
continue with only the selected numerical categorical features.

C. Selection of base classifier

After obtaining a subsampled dataset with selected nu-
merical features, we evaluate several classification algorithms
to select a base classifier for further optimization. In our
experiments, we have evaluated two methods, namely Support
Vector Machine (SVM), and a Feedforward Neural Network
(FFN) method. However, any classifier may be exploited for
this purpose, depending upon the user’s preferences.

1) A Support Vector Machine (SVM) is a discriminative
classifier formally defined by a separating hyperplane.
In other words, given labeled training data (supervised
learning), the algorithm outputs an optimal hyperplane
which categorizes new examples.

2) Feedforward networks consist of multiple layers of
computational units, usually interconnected in a feed-
forward way. Each neuron in one layer has directed
connections to the neurons of the subsequent layer. For
our classification purpose, we used a single hidden layer
perceptron wherein the units of these networks apply a
sigmoid function as an activation function.

We further evaluate two versions of each method: the
general technique and a weighted variation [10]. The results
of each of these are summarized in Table II.

Since the weighted SVM was found to perform best, we
selected this method as the base classifier for the Bayesian op-
timization phase. We further included the 3 features obtained
from the categorical features with the numerical features for
further training, and

Model Non-weighted Weighted
Precision Recall F1-score Precision Recall F1-score

FFN 92.53 4.35 8.32 58.11 10.82 18.24
SVM 84.61 0.77 1.53 13.25 67.39 22.15

TABLE II: Results of base classifier selection process (in %) for
weighted and non-weighted FFN and SVM, using 500 numerical
features selected earlier.

Statistic Precision Recall F1-score
Initial 13.25 67.39 22.15

+ SMOTE 13.35 66.83 22.25
+ categorical 19.41 52.21 28.30

TABLE III: Results (in %) obtained using SMOTE and categorical
features.

D. Bayesian Optimization of evaluation metric

This stage comprises two components, namely SMOTE
oversampling [2], and Bayesian optimization on the evaluation
metric.

1) Synthetic Minority Oversampling Technique (SMOTE):
: The minority class is over-sampled by taking each minority
class sample and introducing synthetic examples along the
line segments joining any/all of the k minority class nearest
neighbors. Depending upon the amount of over-sampling
required, neighbors from the k nearest neighbors are randomly
chosen. For instance, if the amount of over-sampling needed
is 200%, only two neighbors from the five nearest neighbors
are chosen and one sample is generated in the direction of
each. Synthetic samples are generated in the following way:
Take the difference between the feature vector (sample) under
consideration and its nearest neighbor. Multiply this difference
by a random number between 0 and 1, and add it to the
feature vector under consideration. This causes the selection
of a random point along the line segment between two specific
features. This approach effectively forces the decision region
of the minority class to become more general.

2) Bayesian optimization: [11]: Most machine learning
classifiers optimize the linearly decomposable metric of accu-
racy by minimizing a loss function. We optimize a modified
parametrized objective function g(w) with parameter w such
that parameter balances the trade-off between losses incurred
on the samples belonging to the positive and negative classes.
The model obtained by solving this optimization problem
is denoted by M(w). By varying the parameter w, we can
correct the imbalance between losses incurred on the samples
belonging to the positive and negative classes.

M(w) = arg min g(w) = arg min{w·FP+(1−w)·FN} (5)

where w is a parameter between (0,1).
Here, M(w) is the SVM classifier obtained by minimizing

the weighted loss function g(w) = {w·FP+(1w)·FN}. Thus,
we have a technique for providing a weight w, optimizing the
weighted loss function g(w) on the training dataset to obtain
a classification model M(w), and receiving the evaluation
metric such as the Matthew’s Correlation Coefficient MCC(w)
on the validation dataset. By varying w, we search over a large

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

FPR

T
P

R

ROC

8000

10000

12000

0.00 0.25 0.50 0.75 1.00

threshold

co
st

cost function

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

FPR

T
P

R

ROC

6000

8000

10000

12000

0.00 0.25 0.50 0.75 1.00

threshold

co
st

cost function

(b)

Fig. 2: Effect of feature types on ROC in weighted SVM: (a)
numerical features, and (b) numerical + categorical features.

space of machine learning models for a model M∗ that directly
optimizes MCC(w) as

M∗ = arg maxMCC(w). (6)

Using a meta-optimization technique like Bayesian opti-
mization, we can find the parameter w such that parametrized
algorithm returns the highest MCC. Bayesian optimiza-
tion [11] based on Gaussian processes is good for exploration
versus exploitation trade-off in black-box optimization, and fo-
cuses on areas of parameter space w that have higher chances
of attaining maximum objective value MCC(w). As a result,
we chose Bayesian optimization as our meta-optimization
algorithm.

At the time of submission of this report, this meta-
optimization is still training, though initial exploration sug-
gests an improvement of 4-5% on the MCC using w approx-
imately between 0.3 and 0.4.

IV. RESULTS AND DISCUSSION

A. Effect of feature types

The data set consists of numerical, categorical and times-
tamp features, of which we use the 2 former feature types for
classification purpose. During experimentation, it was found
that most of the sensitivity of the base classifier was obtained
due to the numerical features, and the 3 categorical features
used as described earlier only contributed a little in improving
performance. This is pictorially represented in Fig. 2, where it
is evident that adding categorical features barely changes the
ROC curve. The area under curves (AUC) for the two ROCs
are found to be 0.6023 and 0.6452, respectively.

B. Base classifier performances

The variation of classification performances for FFN and
SVM classifiers is more glaringly obvious from the ROC
curves shown in Fig. 3. The AUCs for the same were found
to be 0.5499 and 0.6014, respectively.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

FPR

T
P

R

ROC

4000

6000

8000

10000

12000

0.00 0.25 0.50 0.75 1.00

threshold

co
st

cost function

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

FPR

T
P

R

ROC

13600

14000

14400

0.00 0.25 0.50 0.75 1.00

threshold

co
st

cost function

(b)

Fig. 3: ROC variation for (a) feedforward network (FFN) and (b)
support vector machine (SVM) classifiers.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

FPR

T
P

R

ROC

4000

6000

8000

10000

12000

0.00 0.25 0.50 0.75 1.00

threshold

co
st

cost function

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

FPR

T
P

R

ROC

13600

14000

14400

0.00 0.25 0.50 0.75 1.00

threshold

co
st

cost function

(b)

Fig. 4: Effect of class weighting on SVM classifier performance: (a)
unweighted and (b) weighted SVM.

C. Effect of class weights

The effect of class weighting on the SVM classifier perfor-
mance is shown using the ROC curves in Fig. 4. The AUCs
for the same were found to be 0.5038 and 0.6014, respectively.

V. CONCLUSION

In this work, we explored the simple task of binary classifi-
cation in an industrial setting, such that the large sample sizes
and high dimensionality of features made the task extremely
challenging. For this exploratory analysis, we evaluated sev-
eral feature selection techniques, base classifiers, and post-
classification optimization, and organized these diverse meth-
ods in one architecture that greatly improved classification
performance. While a simple SVM trained on the full dataset
was found to train for several days and performed poorly
(AUC∼0.5), our final model trains quickly and performs
relatively well, with an AUC of ∼0.65. While this performance
may not be considered “good” in an absolute sense, the relative
improvement along with the time and memory efficiency

speaks for the advantages of our architecture. We argue that a
better base classifier such as Extreme Gradient Boosting, and
better sparse online learning algorithms such as the Follow the
Regularized Leader (FTRL) method may be able to improve
classification performance further. We also believe that some
pattern may be obtained by carefully analyzing the timestamp
features, although our initial exploration suggested otherwise.

REFERENCES

[1] X.-Y. Liu, J. Wu, and Z.-H. Zhou, “Exploratory undersampling for
class-imbalance learning,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 539–550, 2009.

[2] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[3] G. Kollios, D. Gunopulos, N. Koudas, and S. Berchtold, “Efficient biased
sampling for approximate clustering and outlier detection in large data
sets,” IEEE Transactions on Knowledge and Data Engineering, vol. 15,
no. 5, pp. 1170–1187, 2003.

[4] L. Van Der Maaten, E. Postma, and J. Van den Herik, “Dimensionality
reduction: a comparative,” J Mach Learn Res, vol. 10, pp. 66–71, 2009.

[5] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[6] Z. Xu, G. Huang, K. Q. Weinberger, and A. X. Zheng, “Gradient
boosted feature selection,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
pp. 522–531, ACM, 2014.

[7] J. Langford, L. Li, and T. Zhang, “Sparse online learning via truncated
gradient,” Journal of Machine Learning Research, vol. 10, no. Mar,
pp. 777–801, 2009.

[8] J. Duchi and Y. Singer, “Efficient online and batch learning using
forward backward splitting,” Journal of Machine Learning Research,
vol. 10, no. Dec, pp. 2899–2934, 2009.

[9] L. Xiao, “Dual averaging methods for regularized stochastic learning and
online optimization,” Journal of Machine Learning Research, vol. 11,
no. Oct, pp. 2543–2596, 2010.

[10] J. A. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle, “Weighted
least squares support vector machines: robustness and sparse approxi-
mation,” Neurocomputing, vol. 48, no. 1, pp. 85–105, 2002.

[11] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “Boa: The bayesian
optimization algorithm,” in Proceedings of the 1st Annual Conference on
Genetic and Evolutionary Computation-Volume 1, pp. 525–532, Morgan
Kaufmann Publishers Inc., 1999.

