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A sentence-level model takes in sentence representations
(from a sentence encoder) as input as opposed to tokens

that are used in standard token-level models.

• (RQ1): How does a representation learn-
ing approach (e.g., fine-tuning, con-
trastive learning, conditional language
modeling) impact the performance of a
sentence-level modeling task?

• (RQ2): What properties must be en-
coded in sentence representations to en-
able sentence-level modeling tasks?

• (RQ3): What are the advantages
of sentence-level models over standard
token-level models?

Experimental Setup

• Experiment with several sentence representations, obtained from a variety of sentence encoders,
to build sentence-level models for addressing (RQ1)

• Use existing sentence representation evaluation benchmarks (Conneau et al., 2018; Conneau and
Kiela, 2018; Muennighoff et al., 2023; Chen et al., 2019) to assess and correlate the surface-level,
syntactic, semantic, and discourse-level properties encoded in embeddings with their downstream
task performance to answer (RQ2)

• Compare the downstream task performance of a token-level model with that of sentence-level
model to investigate (RQ3)

• Three multi-sentence input tasks requiring coarse-to-finegrained reasoning across two domains:
Sentence Ordering, Sequential Sentence Classification, and Natural Language Inference

Finding 1: Less supervised training signals for better generalization
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Sentence-level model accuracy using representations from encoders with varying training regimes and pretraining domains.

Finding 2: CLS token representations right before
the pooling layer are surprisingly better
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Accuracy for sentence-level models trained using representations from BERT, BERT-SimCSE, and SciBERT
obtained via different pooling strategies from the final transformer layer.

Finding 3: First-layer
representations >effective
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Comparing first/last layer pooling for BERT against
SBERT and SBERT-NLI. Variance across sentence

ordering datasets is shown.

Analysis 1: Syntactic and discourse properties drive
downstream performance, not MTEB
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Correlations between probing and downstream task performance for encoders with different training regimes
and domains (left) and pooling strategies (right). Gen: General, Sci: Scientific

Analysis 2: Decodability does not
always equal downstream success
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Correlations between decodability (measured via BLEU,

ROUGE, and BERTScore) and downstream task perfor-

mance for various encoders. Gen: General, Sci: Scientific

Analysis 3: Sentence-level models
>efficient token-level models

Accuracy (%) for different tasks from a token- level and
corresponding sentence-level model. ∗: model was trained

with 8 permutations per training example

Analysis 4: Our findings are robust
across different BERT initializations
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Sentence-level model accuracy (BERT and
BERT-SimCSE) across different pretraining initializations.
“Default” denotes Hugging Face models. Variance is across

sentence ordering datasets.


