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Experimental Setup

Research Questions

Regression (MSE)or  Regression (VSE)or  Regression (MSE) or e Ixperiment with several sentence representations, obtained from a variety of sentence encoders,

C'assifica;ion (CE) C'ass”‘c’c‘;“’” (CE) C'ass‘“ca;“” (CE) to build sentence-level models for addressing (RQ1)

e Use existing sentence representation evaluation benchmarks (Conneau et al., 2018; Conneau and
Kiela, 2018; Muennighoff et al., 2023; Chen et al., 2019) to assess and correlate the surface-level,
syntactic, semantic, and discourse-level properties encoded in embeddings with their downstream

task performance to answer (RQ2)
eprosontaton * * * e Compare the downstream task performance of a token-level model with that of sentence-level
model to investigate (RQ3)

/Encoder\ /Encoder\ /Encoder\
- . . e Three multi-sentence input tasks requiring coarse-to-finegrained reasoning across two domains:
n Sentence Ordering, Sequential Sentence Classification, and Natural Language Inference

BERT-Base

A sentence-level model takes in sentence representations
(from a sentence encoder) as input as opposed to tokens
that are used in standard token-level models.

Finding 1: Less supervised training signals for better generalization

e (RQ1): How does a representation learn-
. . Sentence Ordering (Scientific Domain) Sentence Ordering (General Domain) 0.9 Natural Language Inference (General Domain) Sequence Classification (Scientific Domain)
ing approach (e.g., fine-tuning, con- |
trastive learning, conditional language
modeling) impact the performance of a
sentence-level modeling task?

(RQ2): What properties must be en-
coded in sentence representations to en-
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Sentence-level model accuracy using representations from encoders with varying training regimes and pretraining domains.

token-level models?

Finding 3: First-layer
representations > tective
specifically trained encoders

Finding 2: CLS token representations right before
the pooling layer are surprisingly better
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BERT BERT-SimCSE SciBERT BERT BERT-SimCSE SciBERT BERT BERT-SimCSE SciBERT BERT BERT-SimCSE SciBERT

Comparing first /last layer pooling for BERT against
SBERT and SBERT-NLI. Variance across sentence
ordering datasets is shown.

Accuracy for sentence-level models trained using representations from BERT, BERT-SimCSE, and SciBERT
obtained via different pooling strategies from the final transformer layer.

Analysis 1: Syntactic and discourse properties drive

downstream performance, not MTEB Analysis 4: Our findings are robust

across different BERT initializations

BERT BERT-SIimCSE SciBERT
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Correlations between probing and downstream task performance for encoders with different training regimes
and domains (left) and pooling strategies (right). Gen: General, Sci: Scientific
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Analysis 2: Decodability does not Analysis 3: Sentence-level models
always equal downstream success >t ficient tOken-level models

BERTScore-F1 Task  Dataset Accuracy

Token Sentence

NIPS 36.317 54.29
AAN 48.55™ 63.98
ROUGE-1 : . : . SIND 48.30 48.33
RocStories 61.15 68.30

Accuracy

ROUGE-2 . : . :
' SSC CSAbstruct 73.76 74.06

SO (Gen) NLI(Gen) SO (Sci) SSC (Sci)
NLI ANLI 4'7.38 43.78

Downstream Tasks

Default Seed-1 Seed-2 Seed-3 Seed-4 Seed-5
Pretraining Seed Initialization

Sentence-level model accuracy (BERT and
BERT-SimCSE) across different pretraining initializations.
“Default” denotes Hugging Face models. Variance is across

sentence ordering datasets.

Correlations between decodability (measured via BLEU,

Accuracy (%) for different tasks from a token- level and
corresponding sentence-level model. *: model was trained

mance for various encoders. Gen: General, Sci: Scientific with 8 permutations per training example

ROUGE, and BERTScore) and downstream task perfor-




