Objectives

e We introduce a new paradigm of paraphrase generation with
controllable entailment relations.

» We develop an RL-based paraphrasing system (ERAP) which
can be trained using existing paraphrase and natural language
inference (NLI) datasets.

e We build a NLI-trained oracle to obtain weak-supervision for
entailment relation labels for existing paraphrase datasets.

e ERAP can be used for paraphrastic data augmentation while
reducing augmentation artifacts.

Motivation

Entailment-unaware

Input: A young girl is looking at a woman in costume
Output P1: A girl is looking at a person in a costume. (Forward Entailment )
Output P2: A young girl looks at a woman dressed up as a witch. (Reverse Entailment )
Output P3: A girl, who is little, looks at a woman wearing a costume. (Equivalence =)

Entailment-aware

Input: (A young girl is looking at a woman in costume., Relation)
Relation: Forward Entailment () Output: A girl is looking at a woman in a costume.
Relation: Reverse Entailment (1) Output: A girl, who is little, is looking at a woman in a suit.

Relation: Equivalence (=) Output: A girl of young age is looking at a woman in costume.
A young girl is looking at a A girl of young age is looking at A girl is looking at a woman in
woman in costume a woman in costume costume
A young girl is looking at a A young girl is looking at a A young girl is looking at a
woman woman woman
Original Entailment-aware Entailment-unaware
Example Augmentation Augmentation

e [ixisting paraphrasing systems are unaware of the entailment
relation between the generated paraphrases and the input.

e Such paraphrases when used to generate label preserving
augmentation for downstream task such as textual entailment, might
result in incorrectly labeled data.

e Eixplicit control over the entailment relation between the input and
its paraphrase helps in reducing such incorrect data augmentations.

e = paraphrases useful in highly conservative and precise rewriting,

in summarization or simplification, and 1 in conversational Al.

Given an input sentence X, and an entailment relation R, generate
a paraphrase Y such that the entailment relationship between X
and Y is R. We consider 3 relation controls.

— Y = if X is true, then Y is true.

e Reverse Entailment X J Y :=if Y is true, then X is true.

e Forward Entailment X

e Equivalence X =Y := X is true if and only if Y is true.
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Addressing Data Annotation Challenge

Need entailment relation labels for paraphrases to provide supervision.
Three ways to address this challenge.

» Recasting-SICK [1]: To obtain gold entailment relation labels
for meaning preserving sentence pairs.

e Entailment Oracle: NLI-trained Oracle to obtain weak
supervision for entailment relation labels.

e ERAP: RL-based paraphraser trained using existing paraphrase
and NLI datasets (SICK, SNLI, MNLI, HANS).

Entailment Relation Aware Paraphraser

RL Rewards

Semantic Similarity

B Expression Diversity [

Entailment Relation
Consistency

Input X Generator 5
Relation & Output Y

Hypothesis-only
Adversary

e Generator: A seq2seq transformer pre-trained on ParaBank (2] or

ParaNMT (3| to generate paraphrases Y given X and R

e Evaluator: Consists of several scorers to score the generated
paraphrases for quality and its consistency with the input relation.

e Semantic Similarity: To measure closeness in meaning using MoverScore [4]
which computes word-mover’s distance between contextualized embeddings.

o Expression Diversity: To measure use of different words, 1 — BLEU(Y, X)

e Relation Consi§tency: To encourage paraphrases which conform to input
R) Pomcle(RKX; Y)) ~

e Hypothesis-only Adversary: To penalize if ‘R can be predicted from Y
alone. Trained alternating with the Generator.

Intrinsic Evaluation

e 'To evaluate quality of paraphrase and if it conforms to the desired R

Model R-Test | BLEUT Diversityt :BLEU? | R- Consistency?
Pre-trained-U X 14.92 76.73 7.53 —
Pre-trained-A v 17.20 74.25 8.75 65.53
Seq2seq-U X 30.93 59.88 17.62 —
Seq2seq-A v 31.44 63.90 18.77 38.42
Re-rank-s2s-U Y 30.06 64.51 17.26 51.86
Re-rank-FT-U 41.44 53.67 23.96 66.85
ERAP-U* Y 19.37 69.70 9.43 66.89
ERAP-A 28.20 59.35 14.43 68.61
Fine-tuned-U X 41.62 51.42 23.79 —
Fine-tuned-A v 45.21 51.60 26.73" 70.24"
Copy-input — 51.42 0.00 21.14 45.98
Table: Automatic evaluation of paraphrases from ERAP against entailment-aware (A)

and unaware (U) models. R-Consistency is measured only for models conditioned
(R-Test) on R at test time. Shaded rows denote jupper= and lower-bound models.
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Evaluation Measures

Figure: Mean across 3 annotators for Similarity (a=0.65), Diversity (a=0.55),
Grammaticality (a=0.72) and % of correct relation for R-Consistency (a=0.70).

Extrinsic Evaluation

e To show benefits of entailment-aware models over unaware models
via paraphrastic data augmentation for textual entailment task.

e Naively assuming entailment label preservation under paraphrasing
introduces incorrectly labeled (noisy) training examples leading to
augmentation artifacts in trained models.

Data Z-Test Original-Dev 1 Original-Test 1 Adversarial-Test?T
SICK NLI - 95.56 |93.78 ‘ |83.02\
+FT-U(=) X 95.15 93.68 69.72
+FT-A(=) 95.35 94.62 77.98
+FT-A(=, ) / 95.76 93.95 75.69
+ERAP-A(=) 95.15 94.58 78.44
+ERAP-A(=, 1) 95.15 93.86 69.72

Figure: Accuracy results: FT /ERAP refer to the Fine-tuned/proposed model used for
generating augmentations. U/A denote entailment-unaware (aware) models.
Improved performance of -A models over U while reducing augmentation artifacts.
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