

Entailment Relation Aware Paraphrase Generation

Abhilasha Sancheti^{1,2}, Balaji Vasan Srinivasan², Rachel Rudinger¹

Input: A young girl is looking at a women in a costume.

Input: A young girl is looking at a women in a costume.

Output 1: A girl is looking at a person in a costume.

Input: A young girl is looking at a women in a costume.

Output 1: A girl is looking at a person in a costume.

Output 2: A young girl looks at a women dressed up as a witch.

Input: A young girl is looking at a women in a costume.

Output 1: A girl is looking at a person in a costume.

Output 2: A young girl looks at a women dressed up as a witch.

Output 3: A girl, who is little, looks at a women in a costume.

Input: A young girl is looking at a women in a costume.

Forward Entailment (⊂)

Output 2: A young girl looks at a women dressed up as a witch.

Output 3: A girl, who is little, looks at a women in a costume.

Input: A young girl is looking at a women in a costume.

Output 1: A girl is looking at a person in a costume.	Forward Entailment (⊏)
Output 2: A young girl looks at a women dressed up as a witch.	Reverse Entailment (⊐)

Output 3: A girl, who is little, looks at a women in a costume.

Input: A young girl is looking at a women in a costume.

Output 1: A girl is looking at a person in a costume.	Forward Entailment (⊏)
Output 2: A young girl looks at a women dressed up as a witch.	Reverse Entailment (⊐)
Output 3: A girl, who is little, looks at a women in a costume.	Equivalence (≡)

Output 1: A girl is looking at a person in a costume. Forward Entailment (⊏)

Output 2: A young girl looks at a women dressed up as a witch. Reverse Entailment (⊐)

output 3: A girl, who is little, looks at a women in a costume.	Equivalence (≡)
---	-----------------

Forward Entailment $X \sqsubset Y := If X$ is true then Y is true.

Reverse Entailment	$X \sqsupset Y := If Y$ is true then X is true.
--------------------	---

Reverse Entailment X	\Box Y := If Y is true then X is true.
----------------------	--

Equivalence	$X \equiv Y := X$ is true if and only if Y is true (X \sqsubset Y and X \sqsupset Y).
-------------	---

Reverse Entailment	$X \sqsupset Y := If Y$ is true then X is true.
--------------------	---

Equivalence	$X \equiv Y := X$ is true if and only if Y is true (X \sqsubset Y and X \sqsupset Y).
-------------	---

Neutral	If X is true then Y may be true or false (cannot determine).
---------	--

Forward Entailment	$X \sqsubset Y := If X$ is true then Y is true.
--------------------	---

Reverse Entailment X	$\Box Y := If Y$ is true then X is true.
----------------------	--

Equivalence	$X \equiv Y := X$ is true if and only if Y is true (X \sqsubset Y and X \sqsupset Y).
-------------	---

Neutral	If X is true then Y may be true or false (cannot determine).	

ntradiction If X is true then Y is false and if Y is true then X is false.

Forward Entailment	$X \sqsubset Y := If X$ is true then Y is true.
--------------------	---

Reverse Entailment	$X \sqsupset Y := If Y$ is true then X is true.
--------------------	---

Equivalence	$X \equiv Y := X$ is true if and only if Y is true (X \sqsubset Y and X \sqsupset Y).
-------------	---

Neutral	If X is true then Y may be true or false (cannot determine).

Contradiction	If X is true then Y is false and if Y is true then X is false.

Kind of Relations in Paraphrase Datasets

Relation	ParaNMT (Wieting et al., 2018)	ParaBank (Hu et al., 2019)
Equivalence (≡)	55%	73.3%
Forward Entailment (⊏)	20%	8.1%
Reverse Entailment (⊐)	8%	7.8%
Neutral	8.5%	4.6%
Contradiction	3%	1.9%
Other/Invalid	5.5%	4.3%

Why Entailment-Aware Paraphrasing?

- Equivalent (≡) paraphrases for rewriting in highly conservative, precise contexts.
 - Legal NLP, Medical NLP, paraphrastic data augmentation
- Forward Entailment (⊂) when details may be dropped
 - summarization, simplification, information retrieval
- Reverse Entailment (□) in creative contexts where new details may be introduced
 - storytelling, conversational AI, artistic expression or entertainment, information retrieval
- Paraphrastic dataset augmentation may use all three relations
 - E.g. Natural Language Inference

How to get Entailment Relation Labels?

- Training a supervised entailment-aware paraphrasing system needs paraphrases labeled with entailment relations
 - Manual annotation is expensive
- Addressing data challenge in 3 ways
 - Recasting SICK (Marelli et al. 2014) dataset; using meaning preserving sentences and uni-directional entailment relations
 - Developing NLI-trained Entailment Relation Oracle to obtain weak-supervision for entailment labels
 - Developing Entailment Relation Aware Paraphraser that can trained using existing Paraphrase and NLI datasets

ERAP: Entailment Relation Aware Paraphraser

ERAP: Entailment Relation Aware Paraphraser

ERAP: Entailment Relation Aware Paraphraser

Evaluator: Takes in the generated paraphrase and scores it using different scorers to provide reward to the Generator.

- Encourages generator to output paraphrases which are closer in meaning to the input
- MoverScore (Zhao et al., 2019) to measure closeness in meaning using word mover's distance between contextualized embeddings

- Encourages generator to output paraphrases that **use different wor**ds to express the input
- Inverse BLEU measures the diversity;
 1 BLEU(Y,X)

- Encourages generator to output paraphrases conforming to desired relation R; O(X,Y) matches R
- Likelihood of input relation from Entailment Oracle measures the consistency

- Generator may use certain strategies to get high consistency scores; insertion of tokens
- Penalizes paraphrases if the desired relation can be predicted from the paraphrase alone
- Trained adversarially alternating with the Generator

Entailment Relation Oracle

- NLI is a standard NLU task of determining whether a hypothesis *h* is true (entailment E), false (contradiction C), or undetermined (neutral N) given a premise *p*
- Train a natural language inference model from existing datasets (SNLI, MNLI, SICK, and HANS) to predict E, C, N
- Use NLI forwards (X,Y) and backwards (Y,X) to determine entailment relation label as follows:

$$O(X,Y) = \begin{cases} \equiv & \text{if } o(l|\langle X,Y\rangle) = E \& o(l|\langle Y,X\rangle) = E \\ \Box & \text{if } o(l|\langle X,Y\rangle) = E \& o(l|\langle Y,X\rangle) = N \\ \Box & \text{if } o(l|\langle X,Y\rangle) = N \& o(l|\langle Y,X\rangle) = E \\ C & \text{if } o(l|\langle X,Y\rangle) = C \& o(l|\langle Y,X\rangle) = C \\ N & \text{if } o(l|\langle X,Y\rangle) = N \& o(l|\langle Y,X\rangle) = N \\ \text{Invalid ,otherwise} \end{cases}$$

Evaluation

- Intrinsic
 - To assess the quality of generated paraphrases (Y)
 - To assess if the generated paraphrases (Y) conform to the desired relation (R)
- Extrinsic
 - To show benefits of entailment relation aware generation over unaware counterparts
 - Paraphrastic data augmentation: Augment training data for NLI downstream task
 - Assessing susceptibility to augmentation artifacts

Intrinsic: Comparison Models

- Supervised training on SICK in an entailment-aware (Seq2seq-A) and unaware (Seq2seq-U) supervised settings. (gold labels)
- Pre-training on ParaBank (Hu et al., 2019) dataset in entailmentaware (Pre-trained-A) and unaware (Pre-trained-U) settings. (weaklysupervised labels)
- Pre-training followed by supervised fine-tuning in entailment-aware (Fine-tuned-A) and unaware (Fine-tuned-U) settings.
- Use nucleus sampling (Holtzman et al., 2019) to generate k(=20) outputs from above unaware models and re-rank based on combined score from evaluator (Re-rank-s2s-U; Re-rank-FT-U)

Intrinsic: Automatic Evaluation

Model	<i>R</i> -Test	BLEU↑	Diversity ↑	iBLEU↑	<i>ℛ</i>- Consistency ↑	
Pre-trained-U	×	14.92	76.73	7.53		
Pre-trained-A	1	17.20	74.25	8.75	65.53	lower-bound
Seq2seq-U	×	30.93	59.88	17.62	_	-
Seq2seq-A	1	31.44	63.90	18.77	38.42	
Re-rank-s2s-U	1	30.06	64.51	17.26	51.86	-
Re-rank-FT-U	~	41.44	53.67	23.96	66.85	
$\mathbf{ERAP} ext{-}\mathbf{U}^{\star}$	1	19.37	69.70	9.43	66.89	-
ERAP-A	~	28.20	59.35	14.43	68.61	_
Fine-tuned-U	×	41.62	51.42	23.79	_	
Fine-tuned-A	1	45.21	51.60	$26.73^{\mathbf{*}}$	70.24	upper-bound
Copy-input	-	51.42	0.00	21.14	45.98	-

*R***-Test**: If paraphrase is generated with relation control

-**U** without supervision/weak-supervision for entailment labels

-A with supervision/weak-supervision for entailment labels

Intrinsic: Human Evaluation

Model	R -Test	Similarity↑	Diversity ↑	Grammar†	<i>ℛ</i>-Consistency ↑
Pre-trained-U	×	4.60	2.62	4.73	-
Pre-trained-A	1	4.67	2.60	4.67	48.00
Re-rank-s2s-U	1	2.72	3.15	3.46	24.00
Re-rank-FT-U	~	3.05	2.89	4.27	28.00
ERAP-U	1	3.98	2.85	4.10	40.00
ERAP-A	~	3.95	2.68	4.42	64.00
Fine-tuned-U	×	3.87	3.10	4.83	
Fine-tuned-A	1	3.80	3.04	4.68	48.00

- 3 Mturk annotators per sample per metric
- Semantic similarity (alpha=0.65), Diversity of expression, (alpha=0.55), and Grammaticality (alpha=0.72) on 5-point Likert
- Entailment relation consistency (alpha=0.70): % of correct desired relation

Qualitative Outputs

1. Qualitative outputs for ablation study				
Input ⊏	a shirtless man is escorting a horse that is pulling a carriage along a road			
Reference	a shirtless man is leading a horse that is pulling a carriage			
Only Con	a shirtless man escorts it.			
Con+Sim	a shirtless man is escorting a horse.			
Con+Sim+Div	a shirtless man escorts a horse.			
ERAP-A	a shirtless person is escorting a horse who is dragging a carriage.			

Con: Consistency Scorer; Sim: Semantic similarity scorer; Div: Expression diversity scorer

Qualitative Outputs

2. Example of heuristic learned w/o Hypothesis-only Adversary				
Input ⊐	a man and a woman are walking through a wooded area			
Reference	a man and a woman are walking together through the woods			
-Adversary	a desert man and a woman walk through a wooded area			
ERAP-A	a man and a woman are walking down a path through a wooded area			
Input ⊐	four girls are doing backbends and playing outdoors			
Reference	four kids are doing backbends in the park			
-Adversary	four girls do backbends and play outside with mexico.			
ERAP-A	four girls do backbends and play games outside.			

Extrinsic Evaluation

- Paraphrastic Data Augmentation for NLI
 - Prior work (Hu et al., 2019a) has shown that paraphrastic data augmentation improves performance of NLI models, *but* assumes that entailment relations are preserved under paraphrasing which is not always the case

Extrinsic Evaluation

Given R(P,H), What is R(P`,H`)	H'=H	≡(H,H′)	⊏(H <i>,</i> H′)	⊐(H,H′)
P`=P	$E \rightarrow E$	$E \rightarrow E$	$E \rightarrow E$	$E \rightarrow U$
	NE \rightarrow NE	NE \rightarrow NE	NE $\rightarrow U$	NE $\rightarrow U$
≡(H,H')	$E \rightarrow E$	$E \rightarrow E$	$E \rightarrow E$	$E \rightarrow U$
	NE \rightarrow NE	NE \rightarrow NE	NE $\rightarrow U$	NE $\rightarrow U$
⊏(H,H')	$E \rightarrow U$	$E \rightarrow U$	$E \rightarrow U$	$E \rightarrow U$
	NE $\rightarrow U$	NE $\rightarrow U$	NE $\rightarrow U$	NE $\rightarrow U$
⊐(H,H')	$E \rightarrow E$	$E \rightarrow E$	$E \rightarrow E$	$E \rightarrow U$
	NE \rightarrow NE	NE \rightarrow NE	NE $\rightarrow U$	NE $\rightarrow U$

E: Entailment NE: Non-Entailment (Neutral or Contradiction) U: Unknown

Extrinsic Evaluation

- Paraphrastic data augmentation for NLI
 - Prior work (Hu et al., 2019a) has shown that paraphrastic data augmentation improves performance of NLI models, *but* assumes that entailment relations are preserved under paraphrasing which is not always the case
 - *Hypothesis*: Entailment-aware augmentations result in reduced violation of labels and lead to better performance
- Assessing susceptibility to augmentation artifacts
 - Noisy training examples with incorrectly projected labels lead to augmentation artifacts in downstream tasks
 - *Hypothesis*: Models trained with entailment-aware augmentations are less susceptible to such *artifacts* than those trained with entailment-unaware augmentations. We create adversarial test set to investigate this.

Extrinsic Evaluation: Results (Accuracy)

Data	<i>R</i> -Test	Original-Dev↑	Original-Test↑	Adversarial-Test↑
SICK NLI	-	95.56	93.78	83.02
+FT-U (≡)	×	95.15	93.68	69.72
+FT-A (≡)		95.35	94.62	77.98
+FT-A (≡, ⊐)	~	95.76	93.95	75.69
+ERAP- $A(\equiv)$		95.15	94.58	78.44
+ERAP-A(\equiv , \exists)		95.15	93.86	69.72

R-Test: If paraphrase is generated with relation control *Adversarial-Test:* Incorrectly labeled paraphrastic augmentations in Test-set of SICK NLI

Takeaway

- Developed an RL-based model (ERAP) to generate paraphrases with controllable entailment relations (□, □, ≡)
- ERAP uses NLI-trained oracle in lieu of labeling large paraphrase datasets with entailment labels.
- ERAP can be used for paraphrastic data augmentation while reducing augmentation artifacts.
- Entailment-aware paraphrasing provides control over the semantic nature of paraphrase; enhancing the applicability to downstream tasks

References

- Hu, J. E.; Rudinger, R.; Post, M.; and Van Durme. *ParaBank: Monolingual bitext generation and sentential paraphrasing via lexically-constrained neural ma-chine translation*. In Proceedings of the AAAI, 2019.
- Wieting, J., & Gimpel, K. ParaNMT-50M: Pushing the limits of paraphrastic sentence embeddings with millions of machine translations. ACL, 2018
- Holtzman, A.; Buys, J.; Du, L.; Forbes, M.; and Choi. *The curious case of neural text degeneration, 2019.*
- Marelli, M.; Menini, S.; Baroni, M.; Bentivogli, L.;Bernardi, R.; Zamparelli, R. A SICK cure for the evaluation of compositional distributional semantic models. LREC, 2014.
- Hu, J. E.; Khayrallah, H.; Culkin, R.; Xia, P.; Chen, T.; Post, M.; and Van Durme, B. 2019a. *Improved lexically con-strained decoding for translation and monolingual rewriting.* In Proceedings of NAACL-HLT, 2019.
- Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M Meyer, and SteffenEger. *Moverscore: Text generation evaluating with contextualized embeddings and earth mover distance*. In Proceedings of the EMNLP, 2019

Thanks! Contact: sancheti@umd.edu