Reinforced Rewards Framework for Text Style Transfer

Abhilasha Sancheti¹², Kundan Krishna³, Balaji Vasan Srinivasan¹ and N. Anandhavelu¹

3

Carnegie Mellon University Language Technologies Institute

Goal: Transfer Style of Text

- Transform style of given text from one form to another
 - Formal to informal (vice-versa)
 - Modern English to Shakespearean English (vice-versa)
 - Exciting to non-exciting (vice-versa)
- Wide variety of applications in content creation

Related Work

- Parallel style transfer
 - Xu et al. 2012¹ introduced a parallel corpora and a phrase-based translation model to modernize Shakespearean English sentences
 - Jhamtani et al. 2017² proposed a copy-enriched sequence to sequence model for shakespearizing modern English
 - Rao et al. 2018³ introduced a parallel corpus of formal and informal sentences

- 1. Xu, W., Ritter, A., Dolan, B., Grishman, R., Cherry, C.: Paraphrasing for style. Proceedings of COLING 2012 pp. 2899–2914 (2012)
- 2. Jhamtani, Harsh, et al. "Shakespearizing modern language using copy-enriched sequence-to-sequence models." arXiv preprint arXiv:1707.01161 (2017).

^{3.} Rao, S., & Tetreault, J. (2018). Dear sir or madam, may i introduce the gyafc dataset: Corpus, benchmarks and metrics for formality style transfer. arXiv preprint arXiv:1803.06535.

Related Work

- Non-parallel style transfer
 - Shen et al. 2017⁴ assume a shared latent content distribution and propose a method that leverages refined alignment of latent representations
 - Li et al. 2018⁵ define style in terms of attributes (such as, sentiment) localized to parts of the sentence and learn to disentangle style from content in an unsupervised setting
- Contributions
 - Sentence level loss terms instead of word level
 - Existing work do not optimize over content preservation and transfer strength metrics but to generate sentences matching reference
 - Reinforced rewards framework

4. Shen, Tianxiao, et al. "Style transfer from non-parallel text by cross-alignment." Advances in neural information processing systems. 2017.5. Li, J., Jia, R., He, H., Liang, P.: Delete, retrieve, generate: A simple approach to sentiment and style transfer. arXiv preprint arXiv:1804.06437 (2018)

Reinforced Framework

$$P_t(w) = \delta P_t^{RNN}(w) + (1-\delta) P_t^{PTR}(w)$$

$$L_{ml} = -\sum_{t=1}^{m} \log(P_t(y_t *)))$$

1. Jhamtani, Harsh, et al. "Shakespearizing modern language using copy-enriched sequence-to-sequence models." arXiv preprint arXiv:1707.01161 (2017).

Content Module: Rewarding Content Preservation

- Leverage Self-Critic Sequence Training¹ (SCST) to optimize the framework with BLEU score as reward
- BLEU measures the overlap between the ground truth and generated sentence

$$L_{cp} = (\mathbf{r}(y') - \mathbf{r}(y^s)) \sum_{t=1}^{m} \log(p(y_t^s | y_{1:t-1}^s, x))$$

- y^s is sampled from $p(y_t^s|y_{1:t-1}^s, x)$
- y' is greedy output
- Note that metric is not required to be differentiable

Style Classifier: Rewarding Transfer Strength

- Formal measure for transfer strength required to use SCST formulation
- Train a CNN-based classifier¹ to predict the likelihood that given sentence belongs to target style
- Likelihood taken as proxy to the reward for transfer strength $L_{ts} = \begin{cases} -\log(1 - s(y')), & \text{high to low level} \\ -\log(s(y')), & \text{low to high level} \end{cases}$
- y' is the greedily generated output and s(y') is the likelihood score predicted by the classifier for y'

Evaluation

- Three tasks
 - Reinforcing formality (GYAFC dataset)¹
 - Beyond formality; reinforcing excitement
 - Beyond affective elements (English dataset)²
- Metrics
 - Content Preservation: **BLEU** score between model output and ground truth reference
 - Transfer strength: fraction of generated sentences belonging to the target style (Accuracy)
 - **Overall**: BLEU x Accuracy BLEU+Accuracy

1. Rao, S., Tetreault, J.: Dear sir or madam, may i introduce the gyafc dataset: Corpus, bench-marks and metrics for formality style transfer. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Lan-guage Technologies, Volume 1 (Long Papers). vol. 1, pp. 129–140 (2018)

2. Jhamtani, Harsh, et al. "Shakespearizing modern language using copy-enriched sequence-to-sequence models." arXiv preprint arXiv:1707.01161 (2017).

Baselines

- CopyNMT¹: base model
- Cross-Aligned²: unsupervised cross-alignment model
- Transformer³: train a transformer-based translation model on style transfer parallel dataset

Jhamtani, Harsh, et al. "Shakespearizing modern language using copy-enriched sequence-to-sequence models." arXiv preprint arXiv:1707.01161 (2017).
Shen, Tianxiao, et al. "Style transfer from non-parallel text by cross-alignment." Advances in neural information processing systems. 2017.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems. pp. 5998–6008 (2017)

Experiments: Reinforcing Formality

- Evaluate our model on GYAFC¹ dataset
 - Parallel corpora for formal-informal text
- Ablation study to demonstrate the improvement in performance of the model with new loss terms
 - CopyNMT: Trained with L_{ml}
 - TS: Trained with L_{ml} followed by $\alpha L_{ml} + \gamma L_{ts}$
 - CP: Trained with L_{ml} followed by $\alpha L_{ml} + \beta L_{cp}$
 - TS+CP: Trained with L_{ml} followed by $\alpha L_{ml} + \beta L_{cp} + \gamma L_{ts}$
 - TS \rightarrow CP: Trained with L_{ml} followed by $\alpha L_{ml} + \gamma L_{ts}$ and finally with $\alpha L_{ml} + \beta L_{cp}$
 - CP \rightarrow TS: Trained with L_{ml} followed by $\alpha L_{ml} + \beta L_{cp}$ and finally with $\alpha L_{ml} + \gamma L_{ts}$

^{1.} Rao, S., & Tetreault, J. (2018). Dear sir or madam, may i introduce the gyafc dataset: Corpus, benchmarks and metrics for formality style transfer. arXiv preprint arXiv:1803.06535.

	Info	ormal to Fo	rmal	Formal to Informal		
Models	BLEU↑	Accuracy↑	Overall↑	BLEU↑	Accuracy↑	Overall↑
CopyNMT	0.263	0.774	0.196	0.280	0.503	0.180
TS	0.240	0.801	0.184	0.271	0.527	0.179
CP	0.272	0.749	0.199	0.281	0.487	0.178
TS+CP	0.259	0.772	0.194	0.271	0.527	0.179
CP→TS	0.227	0.817	0.178	0.259	0.5441	0.175
TS→CP	0.286	0.723	0.205	0.298	0.516	0.189

	Info	ormal to Fo	rmal	Formal to Informal		
Models	BLEU↑	Accuracy↑	Overall↑	BLEU↑	Accuracy↑	Overall↑
CopyNMT	0.263	0.774	0.196	0.280	0.503	0.180
TS	0.240	0.801	0.184	0.271	0.527	0.179
СР	0.272	0.749	0.199	0.281	0.487	0.178
TS+CP	0.259	0.772	0.194	0.271	0.527	0.179
CP→TS	0.227	0.817	0.178	0.259	0.5441	0.175
TS→CP	0.286	0.723	0.205	0.298	0.516	0.189

	Info	ormal to Fo	rmal	Formal to Informal		
Models	BLEU↑	Accuracy↑	Overall↑	BLEU↑	Accuracy↑	Overall↑
CopyNMT	0.263	0.774	0.196	0.280	0.503	0.180
TS	0.240	0.801	0.184	0.271	0.527	0.179
СР	0.272	0.749	0.199	0.281	0.487	0.178
TS+CP	0.259	0.772	0.194	0.271	0.527	0.179
CP→TS	0.227	0.817	0.178	0.259	0.5441	0.175
TS→CP	0.286	0.723	0.205	0.298	0.516	0.189

	Info	ormal to Fo	rmal	Formal to Informal		
Models	BLEU↑	Accuracy↑	Overall↑	BLEU↑	Accuracy↑	Overall↑
CopyNMT	0.263	0.774	0.196	0.280	0.503	0.180
TS	0.240	0.801	0.184	0.271	0.527	0.179
СР	0.272	0.749	0.199	0.281	0.487	0.178
TS+CP	0.259	0.772	0.194	0.271	0.527	0.179
CP→TS	0.227	0.817	0.178	0.259	0.5441	0.175
TS→CP	0.286	0.723	0.205	0.298	0.516	0.189

Results: Formality Dataset

	Inf	ormal to Fo	rmal	Formal to Informal		
Models	BLEU↑	Accuracy ↑	Overall ↑	BLEU↑	Accuracy ↑	Overall ↑
Transformer	0.125	0.933	0.110	0.099	0.894	0.089
Cross-Aligned	0.116	0.670	0.098	0.117	0.766	0.101
CopyNMT	0.263	0.774	0.196	0.280	0.503	0.180
TS→CP (Proposed)	0.286	0.723	0.205	0.298	0.516	0.189

Experiments: Beyond Formality

- Evaluate on Excitement dataset to demonstrate generalizability
- Curated this dataset using reviews from Yelp¹
- Reviews with rating >= 3 considered as exciting sentences
- Asked Amazon Mechanical Turkers to rewrite the exciting sentences to make them sound boring or non-exciting
- Asked AMT to rate rewrites and given sentences on a Likert scale of 1(no excitement) to 5 (very high excitement)

Results: Beyond Formality

	Exciti	ng to Non-e	xciting	Non-exciting to Excitin		
Models	BLEU ↑	Accuracy ↑	Overall↑	BLEU↑	Accuracy ↑	Overall↑
Transformer	0.077	0.922	0.071	0.069	0.605	0.062
Cross-Aligned	0.059	0.818	0.055	0.061	0.547	0.054
CopyNMT	0.143	0.919	0.124	0.071	0.813	0.065
TS→CP (Proposed)	0.153	0.922	0.131	0.088	0.744	0.078

Experiments: Beyond Affective Elements

 Evaluate our model on modern English and Shakespearean English dataset¹

	Moder	n to Shakes	pearean	Shakespearean to Modern		
Models	BLEU ↑	Accuracy ↑	Overall ↑	BLEU↑	Accuracy↑	Overall ↑
Transformer	0.027	0.736	0.026	0.046	0.915	0.043
Cross-Aligned	0.044	0.614	0.041	0.049	0.537	0.044
CopyNMT	0.104	0.495	0.085	0.111	0.596	0.093
TS→CP (Proposed)	0.127	0.489	0.100	0.137	0.567	0.110

1. Jhamtani, Harsh, et al. "Shakespearizing modern language using copy-enriched sequence-to-sequence models." arXiv preprint arXiv:1707.01161 (2017).

Human Evaluation

- Ask AMT to rate model outputs and reference
- 3 annotators per output
- Content Preservation: Likert scale of 6

6: Completely equivalent, 5: Mostly equivalent, 4: Roughly equivalent, 3: Not equivalent but share some details, 2: Not equivalent but on same topic,

1: Completely dissimilar

- Transfer Strength: Likert scale of 5
 - 5: Very Informal (Very high excitement)
 - 1: Very formal (No excitement at all)

Results: Human Evaluation

Task	Transfer Strength			Transfer Strength			Conter	nt Prese	rvation
	R>C	R>T	R>S	R>C	R>T	R>S			
I-F	88.67	81.34	70.00	70.00	72.67	83.67			
F-I	73.34	88.67	61.22	59.34	79.34	91.80			
E-NE	64.00	79.34	68.00	60.67	71.34	71.73			
NE-E	76.67	70.67	68.00	69.34	74.00	70.00			

Table 3: Human evaluation results of 50 randomly selected model outputs. The values represent the % of times annotators rated model outputs from $TS \rightarrow CP(R)$ as better than the baseline CopyNMT (C), Transformer (T) and Cross-Aligned (S) over the metrics. I-F (E-NE) refers to informal to formal (exciting to non-exciting) task.

Takeaway

- Explicit optimization over metrics helps in boosting the performance
- Generalized approach; works for a variety of style transfer tasks
- Trade-off between content preservation and transfer strength
- As a future work, we intend to study transfer of multiple styles simultaneously

THANKS!

Contact: sancheti@cs.umd.edu